You are here:

Fluorescence-based tracking of particles from domestic wastewater treatment system plumes discharging to springs in Karst aquifer systems

Fluorescence-based tracking of particles from domestic wastewater treatment system plumes discharging to springs in Karst aquifer systems

Published:

​This research has been carried under the Geological Survey Ireland 2017 Short Call. This call provided funding for researchers in academia or industry on the island of Ireland for projects of less than 12 months duration and less than €25,000. 

Please note that the final report has been redacted to remove staff, financial and sensitive information. Some file sizes have been reduced to allow easier uploading/downloading, higher quality files are available on request. Supplemental information is also available on request in most cases. Please contact research[AT]gsi.ie

Disclaimer:  The views expressed in this report are those of the author(s) and not of Geological Survey Ireland or the Department of Climate Action, Communications and Environment.

Lead Applicant: Dr David O'Connell

Host: Trinity College Dublin

Project Title: Fluorescence-based tracking of particles from domestic wastewater treatment system plumes discharging to springs in Karst aquifer systems.

Project Description: Particulates can play a significant role in the transport of microbial contamination in karst water, however significant knowledge gaps exist addressing the movement of domestic wastewater treatment system (DWTS) (>500,000 DWTSs in Ireland) effluent through networks of fractured rock conduits in aquifer systems enabling extensive transport well beyond the source. Karst aquifer systems are prone to particulate contamination within conduits with long travel distances. While there are abundant studies on the detection of contaminants in karst groundwater, few studies actually address transport of DTWS particulate contaminants to karst springs.

This proposed study will investigate the significance of DTWS particulate contaminant transport to karst springs and design a fluorescence based "early warning detection" technique based on flow regimes and associated pollutants using fluorescence excitation emission matrix (EEMs) and parallel factor analysis (PARAFAC) analysis. This project will run concurrently to the research project "The impact of on-site wastewater effluent on karst springs" which is part of the iCRAG research portfolio until 2020. Preliminary results show successful use of non-conventional tracer techniques at other karst springs which will be integrated in this project into adaptive management strategies using advance fluorescence techniques to protect Karst water resources under population growth, changing climate and land use.

Report