You are here:

Surface wave removal from seismic reflection data using seismic interferometry

Surface wave removal from seismic reflection data using seismic interferometry

Published:

​This research has been carried under the Geological Survey Ireland 2017 Short Call. This call provided funding for researchers in academia or industry on the island of Ireland for projects of less than 12 months duration and less than €25,000. 

Please note that the final report has been redacted to remove staff, financial and sensitive information. Some file sizes have been reduced to allow easier uploading/downloading, higher quality files are available on request. Supplemental information is also available on request in most cases. Please contact research[AT]gsi.ie

Disclaimer:  The views expressed in this report are those of the author(s) and not of Geological Survey Ireland or the Department of Climate Action, Communications and Environment.

Lead Applicant: Dr Ivan Lokmer

Host: University College Dublin

Project Title: Surface wave removal from seismic reflection data using seismic interferometry

Project Description: While there are seismic techniques which make use of surface seismic waves in imaging the
subsurface, there are also those where these types of waves are considered coherent noise. Important examples where the surface waves may significantly degrade the obtained images include different types of reflection seismic surveys (shallow surveys for engineering, environmental and groundwater investigations, and deep surveys for imaging hydrocarbon reservoirs). In a strongly heterogeneous medium, the conventional methods for attenuating these surface waves (such as f-k "velocity" filtering) often do not give satisfactory results. Here we propose a short study, where we investigate the best practices for the surface wave removal by using the advances in seismic interferometry. Specifically, we will cross-correlate the seismic signals from different receiver gathers in order to produce the surface wave field between the receivers in question. When the surface wave gathers are produced for the whole survey, they can be adaptively subtracted from the recorded shot gathers. Apart from the obvious benefit for the applied geoscience community in Ireland, the positive outcome could serve as a pilot study for a bigger enterprise partnership programme focused on interferometric imaging of complex media, relevant for the hydrocarbon, environmental and ground-water studies.

Report